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Bending of electron edge states in a magnetic field
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Institute of Microelectronics Technology, USSR Academy of Sciences,
142432 Chernogolovka, Moscow District, USSR

Received 18 April 1991

Abstract, We discuss a two-dimensional electron gas cut along the half-axis x >0 by an
infinitely high potential barrier and calculate the probability for an electron edge state to
bend around the edge of the cut. The problem is solved exactly by the Wiener-Hopf
technique.

1. Introduction

A number of properties of the two-dimensional electron gas (2DEG) in a strong magnetic
field are related to electron edge states [1,2]. The most prominent property is the
quantum Hall effect {QHE) [3~5], especially the anomalous QHE, when the edge states
are non-equilibrially populated [6-9]. The edge states are very useful in analysing the
magnetoresistance of ballistic microstructures (quantum channels and quantum dots),
where one observes quenching and other anomalous properties of the QHE [10-12].
Coherent electron focusing in the 2DEG [13] is also related to edge states.

Edge-state scattering plays a dominant role in all the above-mentioned effects, There
are several types of scattering of these states: scattering by impurities, phonons and
irregularities of the 2DEG boundary, bending around the boundary corners, and pen-
etration through constrictions (quantum point contacts). Scattering of edge states by
impurities and phonons is discussed in [14, 15], scattering by irregularities of the bound-
ary is discussed in [16, 17], and penetration through small constrictions is discussed in
[17]. Inthis paper we address to the problem of edge-state bending around a corner. We
have succeeded in finding the exact quantum solution of the problem in the case when
the angle at the corner is 2:1.

Consider an electron (e < 0) in plane (x, y) with magnetic field A in the z direction.
The plane is cut along the half axis x > 0 by an infinitely high potential barrier (figure
1). In the far right side of the upper half-plane (y > 0, x = +) there exist edge states
Wy, propagating from right to left, while in the far right side of the lower half-plane
(y <0, x = +) there are edge states W), propagating from left to right. Here £ is the
electronenergyand/ =0, 1,2, . . .isthe Landaulevel number, which labels the different
branches of the edge states.
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oy !
Figure 1. The xy plane. The heavy line (x > Q) is
: the potential barrier. The incoming edge state [is
- x ’ transformed after bending into & superposition of
S/’ two edge states /.

Let some edge wave W, come from x = +% in the upper half-plane. Then the field
y in the lower half-plane at x = 40 is a superposition of edge waves ', with the same
energy

Y= ? Sy (EYV g (1)

The coefficients Sy (E) generate the scattering matrix of the bending diffraction problem.
The aim of the present paper is to calculate this matrix.

The way of solving the diffraction problem is as follows. First we derive the integral
equation for the field 1 at the continuation of the cut (y = 0, x < 0). This equation is
solved by the Wiener-Hopf technique {18]. Next, the scattering matrix can be calculated.
Unexpectedly, the squares |S;(E)[2 are given as ratios of simple polynomials in the edge-
state wavevectors k)(E).

2. Integral equation

The diffraction problem formulated in the introduction is to solve the Schrodinger
equation

Hyp = Ey

et ) ()

with the following boundary conditions:

(Dy=0aty==+0forx>0;

(ii) y = 0 at y = £ for ail x values;

(ii)) y = Phatx = +ofory >0

(iv) 9 is a linear combination of edge states Wy, with the same energy E at x = +x
fory <0;and

(v) y =0at x = —xfor all y values,

Define the ‘scattered’ field ¢’ by
y=9'+y 3)
where ° is the ‘incoming’ field, i.e. y® = W, for y > 0 and y° = 0 for y <0, Field v’

satisfies the same equation and the same boundary conditions as does field v, with the
only exception that instead of (iii) the boundary condition is y' = Qat x = 4o, y >0,
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The integral equation for the field ¢/ (x < Q) = y(x < 0) = @(x) at the half-axisx <0
can be deduced, using the Green theorem from {17):

VO =an$ & (V)3 607 - G v )

- ;;ic §c dr’ W AG Y ()G, ). )

Here C is a closed contour, the point r being inside, #’ is the external normal and the
integration over d!’ goes anticlockwise. The Green function G obeys

[%() — EG(r, ) = —8(r = ') ®
with the Hamiltonian from (1).

Let C be a contour going first along the x axis fromx = —»tox = +ecaty = +0and
then along an infinitely distant semicircle at y > 0-. Let the Green function in (5) be the
outgoing-wave Green function of the upper half-plane, defined in the appendix. Taking
into account the gauge (A1), the symmetry property (A14) and the boundary condition
(i) for y', we obtain

’ 1 0 ! ’ a el r
>0 ye-g wew|eenr] o ©

The integral over the distant semicircle vanishes as usual, owing to infinitesimal dissip-
ation.
When C is a similar contour in the lower half-plane we obtain

1 ° 3 - ,

< '=— | dr x'[—Gx, 3 x, '] 7

<o yeg aee|neeyen| 0

where G is the Green function of the lower half-plane. From symmetry arguments it

follows that

Glx,y;x',y') = G(—x, —y; —x', =y'). (8)

The desired equation for @ can be obtained from the continuity of the derivative
dy/ayaty =0,x<0,ie.

Wy L) v

Y ly=+0 8y ly=+0 QY y=—0 ©)
Calculation of the derivative 91p'/3y on the Lus of (9) from (6) yields
0
Lwen| = wewke-w (10)
Y y=+0 —ze
with
t 1 az L} 4
Kx—-x)=- %[ayay' G(x, —x';y,¥ )]y=y'=0‘ (11)

Making use of (8) one can calculate the derivative ay’ /dy on the RHS of (9) from (7),
giving

=- j " ' )K= ©). 12)

Now introduce (10) and (12) into (9) and assume the field ¥ to be an edge state

a r
51# (xny)

y=-
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normalized to unit flux (see appendix). As a resuit, we obtain from (9) the integral
equation for g(x)atx <0:

1/2
(Zm) ) clk i .
dy

[ ar o0)ik(e - ) + K = 0] = - (13)

To calculate the kernel of this equation in an explicit form we use the representation
{A12) of the Green function. It follows from {A14) that

Ke) = - 5 [ e Wi 0040) (1)

Puty = 0in (A17) and use (A18). Then the derivatives are given by

‘PL(O)"—“;/—EADL(—’Q')

15
V2 _(27)'? {13
¢, (0)=——8 s
ay TI'(-v)
Substituting these derivatives into (14) and making use of (A19), one obtains
VZ rdk . DL(—
K(x) 9K e Dr(ZE) (16)

)2t D(-E

It is convenient to use the non-dimensional variable r = —x/\/f gy and the non-dimen-
sional field v = @/m!”. In terms of these variables (13) takes the following form:

f Cdr o) - ) =) >0 an
4]

wheret

)y = —e7i¢

—ey (18)
L) = f %%({_—g (€% + i) = B(~1).

The integration path in the complex plane { = £ + in goes near the real axis from
£ = = to { = +o and encompasses the real poles from above (see appendix).

Before solving equation (17), let us investigate the behaviour of the kernel £(r) as
t— . Since £(r) is symmetric, assume ¢ > 0.

In the first term of the integral (18) the integration path can be closed, adding a
semicircular contour at infinity in the upper half-plane n > 0. Only complex poles at &
contribute to the integral, and as a result the first term vanishes exponentially as t— -+o.
In the second term of the integral (18) a semicircle in the lower half-plane 5 < 0 can be

t To avoid explicit consideration of singularities of the kernel &, one first performs the Fourier transform
t— £ and then the limit y, ' — 0.
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added to the integration path. Hence, the real poles at & also contribute. Making use
of Res[D,(—&)/D,(— )] = —1 we obtain

P = —i peiEn (t— +). (19)
4 .

To make the diffraction problem definite, we introduce, as always, a small dissip-
ation, replacing & by & — io, with ¢— +0. It means that in the kernel of (18) D,(—¢)
is to be replaced by D (—{ — io), and that f{z) is to be multiplied by e~°*. After the
dissipation ¢ is introduced, the integration path in kernel (18) can be chosen along the
real axis £. Changing the integration variable in the second term, { — — £, we get

2= [ SemH) 0
where
DD L DN o 1 )
HO) = 5 tmi0) " Dot -i0) = T(=») DuC—ioID(~E =iy ~ )

1)

Here the Wronskian (A18) was used, and we put o = 0 in the functions D, entering in
the numerator. ‘

3. Solution of the integral equation

Integral equation (17) can be solved by the Wiener—Hopf technique {18]. To do this, we
define a new unknown function for ¢ < G,

u(t) = r ar o)L - 1) 22)
0

and extend the functions v, f and u to the entire ¢ axis, assuming that by definition o = 0
and f=0for t+<0, and © = 0 for ¢t > 0. With these definitions one can see that the
following equation is valid for all # values:

] " dr' otV (e — ') = u(t) + f(1). (23)
Perform the Fourier transformation
)= FO) = [ dre 50 )

The Fourier transform of the kernel (¢} is H(£). The singularities of H({) are poles,
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1 €3]

Figure 2. Location of the poles of the Fourier
transform (21) of kernel (18}.

the locations of which are shown in figure 2. The poles of the first term in (21) are the
‘real’ poles at &; — ic and the complex poles at {5. The residues of these poles are —1.
The poles of the second term are at —§; + io and — g with residues +1. The complex
poles of H({) are located symmetrically with respect to the real and imaginary axes:
+Fs, ££% . Function H(Z) is regular in the strip || < ¢, where ¢’ = 0~ 0 (see figure
3).

The analytical properties of the transform () are determined by the properties of
the field (x). It follows from physical arguments that g (x) is exponentiaily small when
|x| 2 ay. Hence, 5(L) is obviously regular at 7 < o', i.e. in the strip and below it. The
same is true for the transform

RO =Wt + & —io)™". ‘ (25)

Since for large ¢ kernel £(7) ~ e~ and since o() is exponentially small for # > 1, one
can see that u(f) ~ e” as t— —oo, Hence, #({) is regular at n > —o, i.e. in the strip and
above it.

As aresult, the Fourier transforms of all the functions which enter (23) are regular
in the strip [n] < o’ < 0. Hence, the following equation is valid in the strip:

B(EYH(E) = a(t) + AE) In| = o". (26)
The next step in the Wiener-Hopf technique is the factorization of the kernel,
H(&) =H_ . (§)H-(E) (27)

where H () is a function with all its singularities below the strip, while H_({) is a
function with all its singularities above the strip. The calculation of these functions is
given in the next section. The result is

H. (L) = [H(0)]'” exp(3£? — ict) (28)

1
P.(5Q.(5)

where

P@=(1-527) Qu@=ﬁ0u§%ma 29)

g —io s 5

P.(£) is a polynomial, the order of which is equal to the number of propagating edge
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states, and Q..() is an infinite product over all the complex poles of H(Z) located in the
lower half-plane. It follows from the asymptotic behaviour of £, given by (A21), that
0.(L) converges when combining the factors, which correspond to the poles £, and
—£¥, located symmetrically with respect to the imaginary axis.

The real quantity ¢ entering in (28) is given by the principal value of the integral

= dg H'(E)
T HD) om0 0
Factorization (27) is assumed to be symmetric, i.e.
H_(§)=H. (-5 (31)
It follows from the symmetry of the location of the poles of H({) that
1
= 12 2oaeN ot
H(2) = (HOP" exp(t? +3e0) s (2)
where
_ E N_p.(-
P 0=T(1-g55)-P-¢-0
(+) (33)

Q (&)= [I (1 - ;E) et = Q. (=E).

From (28) and (32) one can obtain H() as an infinite product
H(E) = H(0) exp(E*)[P. ()P ()2, (H)2-(D)] . (34)

Function H,(£) has no zeros in the strip 7| < o', and hence (26) can be written in the
form

5(H-(8) = H_(?;) If(%) (33)

Now we have to perform the decomposition of the excitation term of the integral
equation,

+ h(E) h(&) =

h(E) =R, (8) +h_(E)

where £, is regular in the strip and above it, and /.. is regular in the strip and below it.
It is easy to verify that

o) ( 1 )
ho(D)=07"7—"—"— — | 36
O fario mOOEG Eravo ()
Function 2_() differs from () by a constant factor, while the pole of A£) in the
expression for A, {£) is quenched by the zero of the factor in brackets.

Substituting decomposition (36) in (35} gives

~ _#E)

S(EYH - (8) — h-(§) = + 1, (8) = p(&). (37)
H., ()

H one performs the analytical continuation of both sides of (37) from the strip |y] < ¢’

to the entire complex plane, the LHS becomes a function regular for 1 < ¢’, while the

RHS becomes a function regular for n = —o'. Hence, p({) is an entire function.
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n @
=5, 40
e
N 3
—— e S —
-0 ) . L‘L..-_ _:-_ " ——\
‘ /‘//_ i P=-nib

Figure 3. Strip | << ¢, where all the Fourier trans- Figure 4. See text,

forms are regular, and the integration paths C..

Actually, p(£) =0, since p(£)— 0 as { — . To prove this, consider the LHs of (37)
as {— o in the lower half-plane. It is obvious from (36) and (25) that #_(£)— 0 as
£ — . The behaviour of 5(£) as { — = is determined by the behaviour of v(r) as +— 0.
In [17] it was demonstrated that at small distances the wavefunction ¥ in a magnetic
field obeys the Laplace equation. Hence, the singularity of ¢ as x = 0 is the same as the
singularity of the electrostatic potential near the edge of a metallic plane with a zero
potential. As a result, v(s) ~ /2 as t— 0, and correspondingly #(£) ~ {32 as £ — .
Making use of (57), we can see now that H, (£)6(Z) — 0 as £ — = QED.

Making use of p(£) = 0, one finds eventually the Fourier transform of the solution
of integral equation (17}

5(E) = h-(L)/H-(D). (38)

4. Factorization of the kernel

To factorize the kernel H(£), we consider first its logarithmic derivative

d H'(E)

ClnH(C) : e e e (39)

AG) = HE)

and decompose it [18]

A= AL+ A(D) (40)

where A, is regular for n > —g, and A_ is regular for # < . In these domains the
functions A. are given by integrals

Au(D) = f Ep (4D

The integration path C, is from & = —wto £ = +walong the lower boundary of the strip
|n| < o', while C_ is in the same direction along the upper boundary (figure 3). One can
easily verify that

A_(B) = -A.(=0) (42)
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The factorization of the kernel H() is given in terms of the function A () as follows:

H.(8) = exp fc C 4 A ©)) “3)

where £, are arbitrary integration constants. To ensure symmetry relation (31), we have
tochoose {_ = —¢,.

The asymptotic properties of A({) as § = pe'? — = can be found from the known
asymptotic properties of the functions D,(£) [19]. The resuit is as follows: in the lower
and upper sectors (hatched in figure 4)

AQ)=C-20/0+... (44)
while in the right and left ones _
AG) =1/E+202v + 1)/E3. (45)

Because of the growth of A(f) in the lower and upper sectors, one cannot close the
integration path in (41). This is the reason for calculating first the function

d L . (9 4
A+(;) 2ori c. dg (;1_;)2' ( 6)
Represent the integral along C.. as an integral along the closed contour C, + Cy
minus the integral along Cg. Here Cj, is a semicircle in the lower half-plane, with radius
R - o (see figure 4). For n > — 0’ the integral along C, + Cy is a sum of contributions
from the poles £, of A({) in the lower half-plane. These poles are in the same points as
the poles of H({), and Res A(E,) = —1. Asaresult
(=)

1 1
nm——j ()= (47)
R 2mide oo S (E-8&)
The sum over r runs over a finite number of ‘real’ poles &, — io and over an infinite
number of complex poles £, and —£%. The infinite sum converges if one combines the

terms corresponding to £, and — Q*

Calculating the integral along Cg, we can neglect £ compared to £’ and replace A(L")
by the asymptotic expansions (44) and (45). Performing the limit R — =, one finds the
integral to be equal to —1/4. Combining both integrals we have

d
£A+(C) +2(C ;r)z (48)
Integrating (48) we obtain _
9 - _d-(-) - _z:':_. &g,
ALD = A0 ““E;,(c, 5= A0+ dggln[(l ;r)e ).
(49)

Introducing (49) into (43) we have
=)

H = Ho© explie? + 4,0 11 (1 - f) " et (50)

r

Setting £ = 0in (27) we find
H,(0) = H_(0) = [H(0)]*. &Y
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To calculate A, (0) from (41) we can choose the integration path along the real axis
since A(0) = 0. After performing the limit o — 0, the integration path C, encompasses
the poles & from above and the poles —& from below (see figure 3). As a result, the
integral is represented as a sum of two terms, the first being the sum of half-residues and
the second being the principal part of the integral, i.e.

A 0) = > (52)
7 &

where c is given by (30). The first term in (52) when introduced into (50) cancels the
exponential factors, corresponding to the real poles of the infinite product, and we
obtain (28).

The asymptotic behaviour of infinite products like Q,(£) in (29) for £ — o« depends
on the asymptotic behaviour of zeros £ for s — o [18]. Since there is no simple function
with an asymptotic behaviour of zeros like in (A21), we come back to the integral
representation on (41) of function A,.. For 5 > o we can represent A, (£) as an integral
along the real axis and split the integral into a sum of two parts,

+oc d&r L3 d§! gr
with
LA —— o '
M(E) = A(8) 1o M(-8). (54)
1t follows from (45) that for E— xx
M(E) = (4w + 3)57. (55)

In the first integral we expand (£’ — £)~! in powers of £/ and find that this integral is
of the order of £~2 as & — . The second integral is equal to $(§ + i). As a result

A =%+... . (>=n>0). (56)
Substituting (56) into (43) one finds
HO~87  (—en>0), 57

5. Scattering matrix

First we calculate the scattered field v’ in the far right side of the lower half-plane
(x = 4+, y < 0). It follows from (7) that for y <0

e

Ve =] & et S IR0 6B

Introduce the non-dimensional variables ¢ and v from section 2 and substitute ¥, and
d;, from (A17) and (15), respectively. Then we obtain

d o Dy(—s -
y<0 pen=mn [ Eao e‘h—Di(%é)—g)

As x— +oo, only the ‘real’ poles & —io contribute to the integral (see appendix).

(59)
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Making use of (A11), one obtains
y<Ox—to YY) = -2l -io)alxy). (60

Comparing (60) with (1), using 5(Z) from (38) with 4_(£) and f(£) from (36) and (25),
we find the scattering matrix

1 1
E4E HL (CENH (&)

Here we put o =0, since the points £ = —&, are far from the poles of H.({). The
scattering matrix is symmetricin/and I'. This symmetry results from the time-magnetic
field inversion combined with reflection from the xz plane.

The matrix elements Sy are given in terms of a rather complicated function H,(£),
but the squares |S;,|? can be found in a very simple closed form. Consider first

S (E) = (61)

15, (B)? = H(0)e¥ P () * Q. (B)|? (62)
for real argument £. From the symmetry of the complex poles it follows that
Q.8 =0_(8). (63)

Making use of this relation and (33) and (34), we can eliminate the infinite product from
{(62). As aresult,

|, (5)7 = H(E) P_(&)/P, (&)". (64) |

When setting & = — & in (64), we can set 0 =0in P.(§) and omit the complex-con-
jugation sign. Function H(E) has a pole at § = —&; with residual equal to -+1, while
function P_(&) has a zero. Performing the limit § — —& we obtain

\H, (=& = -PL(&E)/P.(-E) (65)
with

P.(&)= IJ (1-&/8). (66)

Now from (61) and (65) one obtains a very simple closed expression

B 1 P (—-5)P.(—&)
N R N AR AT (67)

The possibility to obtain closed expressions for the squares of the scattering matrix
elements is perhaps a general property of some diffraction probiems. A similar result is
obtained in the case of electromagnetic wave diffraction at the open end of a semi-
infinite waveguide [20].

In what follows we give explicit expressions for |Sp |2 If the energy E is between the
bulk Landau levels ! = 0 and [ = 1, only one edge state with [ = 0 exists, and obviously
|Saof? = 1. If E is between the Landau levels [ = 1 and = 2, two edge states exist with
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Figure 5. Plot of E versus k for edge states,
Note that E;(+%) =fhwy(l+14) and E(0)=

T R TR T

wavevectors & < D < &, (see figure 5), From (67) it follows immediately that

&+ &)

WSaol? = 5—F 5 = ISul’
5o — &)
' 68
IS ]2=___<f§°_§_1__.”ﬁ . _ “
01 (EG _ EL)T ' ' LR R

When E is between the Landau levels / =2 and ! = 3, three edge states exist with
Ey<0<§& <&and

1Sl = (Eo + 51)2(59 +v§2)2
w (Eo — E1)? (& ~ £2)°
1Sg,]? = ~ 45 G+ E)E +E)
ol =~ E S e G Ry

The other matrix elements can be obtained by changing the indices. It is a straight-
forward calculation to verify flux conservation for (68) and (69). Note that (68) can be
deduced from (69) by omitting all the factors involving &,.

Of special interest is the case when energy E approaches the energy of a bulk Landau
levelhwy(n + 3),i.e.v = n + 8,8 — 0. When Eisbelow the threshold (6 < 0), equation
(A8) has n roots, which are zeros of the Hermite polynomial H,(£/V2). Ifniseven, the
wavevectors & are divided into pairs (&g, §,oy = ~ &), (§10 Ep-2=~51),.. .. Ifnis
o0dd, except for the pairs there also exist 2 single mode &, = Owith! = (n — 1)/2. When E
isabove the threshold (§ > 0), anadditional wavevector &, » 1appears. This wavevector
corresponds to a quasi-bulk state located far from the boundary at y,, = ayk,/V2 > ay.
Forexample, when v — 1 one has §;,— 0 (single mode) and &, — +% (quasi-buik mode).
When » — 2 one has £4— —E, { pair of modes) and £, — + (quasi-bulk mode). From
(68) and (69) it follows that near the threshold (8 —» 0) the single mode and the quasi-
bulk modes are weakly mixed with other modes, while the pair modes are transformed
nearly into each other.

(69)
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Appendix. Edge states and Green function

Here we collect for reference purposes some formulae related to the Schrédinger
equation for a 2D electron confined to a half-plane in a magnetic field [21, 22].
‘We choose the Landau gauge of the vector potential

A, =—Hy A, =0. (A1)

In this case the edge states in the upper half-plane v > 0 are eigenfunctions of the
Hamiltonian (2) satisfying the following boundary conditions: ¢ =0 at y =0 and
y = -+, The edge states are of the form

¥(x, y) = Ne¥y(y) (A2)
where k is the wavevector, and function y obeys

Hix=Ex x(0) = x(+>=)=0

1 92 1 (A3)
k“'_%a_yz""M(y—Yk}z yi = kay, afy = cflelH.

The equation for y can be transformed to a non-dimensional one, if the following
variables are introduced:

§=V2y/ay E=\2kay v+ 4= Effoy wy = fe]H/me.

The non-dimensional equation reads

(- 25+ -9 )r=t+) (a9
as?  * x %

Two linearly independent solutions are the parabolic cylinder functions [19]

D,(5-8) D,(~5+8). (AS5)
Since v > 0, we have

D,(85)—0 D, (-8§)—>= (§— +=). (A6)

Hence, from the boundary condition at y = +, it follows that

x(y) =cD, (S - §). (A7)
From the boundary condition at y = 0 one has

D,(-8) =0 (A8)
This equation has a finite number of real roots §; (/ =0, 1, . . ., [¥], where [v] is the

integer part of »), where [ is the number of nodes of function y(y), excluding y = 0. The
label /is also the number of the bulk Landau level, from which the edge state is derived.
The roots £{v) determine the wavevectors k{£) of the edge states present for given
energy E (see figure 5).
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From equation (A3) one can prove that for any eigenstate
aEfak = —(ak/2m)y’ (0)? (A9)
if the normalization is conventional
[Caraor=1
1]
Making use of this relation, it is easy to find the edge states normalized to unit flux
(2m)1;2 eier XFl(y) =m!/2 e”‘*" DV(S — 6?)
xe(0) D.(-&)

Note that the normal derivative at the boundary y = 0 of all these states is the same.
The edge states at y < 0 for the same gauge of the vector potential can be obtained
from states (A10} by changing the signsof x and y, i.¢.

— 2 ik ,xRi_i—_E’_)_

D,(-&)
The additional minus sign in front of ¥ is introduced to represent the change of the sign
of the derivative. '

The Green function G(x, y;x’, ¥") obeys (5) in xy and the following boundary
conditions; ’

Yglx,y) = (A10)

Wz, y) = ~Wel(-x, —y)= (All)

(G=0aty=0,y=+»,x —x"—» +=; and
(ii) G is a superposition of edge states propagating from right to left atx — x' — —,

Qwing to the translational invariance in x the Green function has the form

- dk ,
Glx,y;x',y") = fﬂem("”Gk(y,}”)- (A12)
Function G, is the Green function corresponding to %, (A3}, i.e.
[#e(y) — EIGi(y,y") = —=8(y — ¥'). (A13)
Hence,

Gy = Gulrapy = [T =Y (A14)
Ve ) y>y
where @, and ¥, are solutions of equation (A3) with boundary conditions
®.(0)=0 Wi (+) =0 (A15)
and normalized by the condition

W,{®, W} = W' — W' = 2m (A16)

where W, is the Wronskianin y.
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It follows now from (A4) and (Aé) that
V. (y)=AD, (5 &)

(A17)
@:(y) = B[D,(5)D,(S~ §) =D, (-5D, (-5 + §)].
Making use of
WsiD,(S), D, (-8)} = (27x)'/T(~v) (A18)
we find from (A16)
AB = (may /x'?)T(-v)/D,(~5). (A19)

Tosatisfy the boundary conditions atx — x' — 3, we choose the proper integration
path in {A12). Consider G, for compiex k, i.e. change the real variable £ to a complex
one { = & + in. Since D,({) is an entire function in £, the only singularities of G, in {
are poles, which correspond to the zeros of the denominator in AB (A19). The zeros
of the parabolic cylinder functions

D,(-£)=0 (A20)

define first-order poles. A finite number of these poles are on the real axis at points &,.
These real poles correspond to propagating edge states, see (AB). Besides, there exists
an infinite number of complex poles £ at complex-conjugate points. The complex poles
correspond to evanescent edge states.

Using the asymptotic expressions for D.(—{) as £ — «, one can find that for large
|| the roots of (A20) are near the Stokes lines

£, =212 e®intdgl2, (A21)

Bearing in mind the analytical properties of G, in the { plane one can verify that the
boundary conditions for G at x — x’ — = are satisfied if the integration path in {(A12)
encompasses all the real poles from above.
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