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Bending of electron edge states in a magnetic field 

Y B Levinson and E V Sukhorukov 
Institute of Microelectronia Technology, USSR Academy of Sciences, 
142432 Chernogolovka, Moscow District. USSR 

Received 18April1991 

Abstract. We discuss a two-dimensional electron gas cut along the half-axis x > 0 by an 
infinitely high potential barrier and calculate the probability for an electron edge state to 
bend around the edge of the cut. The problem is solved exactly by the Wiener-Hopf 
technique. 

1. Introduction 

A number of properties of the two-dimensional electron gas (ZDEG) in a strong magnetic 
field are related to electron edge states [I, 21. The most prominent property is the 
quantum Hall effect (QHE) [3-5], especially the anomalous QHE, when the edge states 
are non-equilibrially populated [&99]. The edge states are very useful in analysing the 
magnetoresistance of ballistic microstructures (quantum channels and quantum dots), 
where one observes quenching and other anomalous properties of the QHE [10-12]. 
Coherent electron focusing in the ZDEG [13] is also related to edge states. 

Edge-state scattering plays adominant role in all the above-mentioned effects. There 
are several types of scattering of these states: scattering by impurities, phonons and 
irregularities of the ZDEG boundary, bending around the boundary corners, and pen- 
etration through constrictions (quantum point contacts). Scattering of edge states by 
impurities and phonons is discussed in [14,15], scattering by irregularities of the bound- 
ary is discussed in [16,17], and penetration through small constrictions is discussed in 
[ 171. In this paper we address to the problem of edge-state bending around a corner. We 
have succeeded in finding the exact quantum solution of the problem in the case when 
the angle at the corner is 27. 

Consider an electron (e < 0) in plane (x, y )  with magnetic field H in the z direction. 
The plane is cut along the half axis x > 0 by an infinitely high potential barrier (figure 
1). In the far right side of the upper half-plane (y > 0, x = +m) there exist edge states 
'Pa, propagating from right to left, while in the far right side of the lower half-plane 
(y < 0 , x  = +m) there are edge states Ya, propagating from left to right. Here Eis the 
electronenergyandI= 0,1,2,. . .istheLandaulevelnumber,whichlabelsthedifferent 
branches of the edge states. 
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Figure 1. The xy plane. The hcavy line (x > 0) is 
the potential barrier. The incoming edge state lis 
transformed after bending into a superposition of 
twoedgestatesl'. 

Let some edge wave Ya come from x = fm in the upper half-plane. Then the field 
ty in the lower half-plane at x = +m is a superposition of edge waves Yfit with the same 
energy 

The coefficientsSIl.(E) generate thescatteringmatrix ofthe bendingdiffraction problem. 
The aim of the present paper is to calculate this matrix. 

The way of solving the diffraction problem is as follows. First we derive the integral 
equation for the field ty at the continuation of the cut (y = 0, x < 0). This equation is 
solvedbythe Wiener-Hopftechnique[18].Next, thescatteringmatrixcanbecalculated. 
Unexpectedly, the squares ISl@)\* are given as ratios of simple polynomials in the edge- 
state wavevectors k,(E). 

2. Integral equation 

The diffraction problem formulated in the introduction is to solve the Schrijdinger 
equation 

with the following boundary conditions: 

(i) * = Oaty = *Oforx > 0; 
(ii) * = 0 at y = +=for allx values; 
(iii) T@ = YEl at x = +a fory > 0; 
(iv) q is a linear combination of edge states YE( with the same energy E at n = += 

(v) q = 0 at x = -= for ally values. 

Define the 'scattered' field q' by 

for y c: 0; and 

ty = qo + ly' (3) 

where tyo is the 'incoming' field, i.e. yo = YE, for y Z 0 and ly" = 0 for y C 0. Field W' 
satisfies the same equation and the same boundary conditions as does field ly, with the 
only exception that instead of (iii) the boundary condition is q' = 0 at x = +m, y > 0. 
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The integralequation for the field @'(x < 0) = v(x < 0) = q ( x )  at the half-axisr < 0 
can be deduced, using the Green theorem from [17]: 

1 a a 
v'(r) = j--$c dl' (v'(r') G(r, r') - C ( r ,  r') - an' v'(r')) 

ie -- mc$c dl' n'A(r')v(r ' )C(r ,  r'). (4) 

Here C is a closed contour, the point r being inside, n' is the external normal and the 
integration over dl' goes anticlockwise. The Green function C obeys 

with the Hamiltonian from (1). 
Let C be a contour going first along thex axis fromx = --CO tox = +mat y = +O and 

then along an infinitely distant semicircle at y > 0.. Let the Green function in (5) be the 
outgoing-wave Green function of the upper half-plane, defined in the appendix. Taking 
into account the gauge ( A l ) ,  the symmetry property (A14) and the boundary condition 
(i) for v' ,  we obtain 

[%(r) - E]G(r, r') = -s(r  - r') ( 5 )  

The integral over the distant semicircle vanishes as usual, ow-ing to infinitesimal dissip- 
ation. 

When Cis a similar contour in the lower half-plane we obtain 

where 6 is the Green function of the lower half-plane. From symmetry arguments it 
follows that 

(8) 
The desired equation for q can be obtained from the continuity of the derivative 

G(x, y ;  x' ,  y ' )  = G(-X, - y ;  -x', -y') .  

aq/ayat y = 0,x < 0, i.e. 

Calculation of the derivative a *'/ay on the LHS of (9) from (6) yields 
0 a 

ay y = + o  -- 
- y r ' ( X ,  y)I = 1 dx' q(x ' )K(x  - x') 

with 
1 a2 

2m ayay' K(x - x ' )  = - -[- G(x, -x'; y, y ' ) ]  y = y * = o  . 

(9) 

Making use of (8) one can calculate the derivative a v ' / d y  on the RHS of (9) from (7) ,  
giving 

0 a 
ay y =  -0 -0, 

-vyx, y)I = - 1 dx' q(x ' )K(x  - x ' ) ,  

Now introduce (10) and ( 1 2 )  into (9) and assume the field q0 to be an edge state 
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normalized to unit flux (see appendix). As a result, we obtain from (9) the integral 
equation for q ( x )  at x < 0: 

Y B Leoinson and E V Sukhorukou 

To calculate the kernel of this equation in an explicit form we use the representation 
(A12) of the Green function. It follows from (A14) that 

Put y = 0 in (A17) and use (AB). Then the derivatives are given by 

.\/z 
Y;(O) = - A D : ( - E )  

QH 

Substituting these derivatives into (14) and making use of (A19), one obtains 

It is convenient to use the non-dimensional variable t = -x/ . \ /zaH and the non-dimen- 
sional field U = q / m ' p ,  In terms of these variables (13) takes the following form: 

dt' ~ ( l ' )  9(t - 1') = f(f) 1 > 0  (17) 

wheret 

f(r) = -e-'Er( 

The integration path in the complex plane f = E + iq goes near the real axis from 
5 = --m to  5 = +m and encompasses the real poles from above (see appendix). 

Before solving equation (17, let us investigate the behaviour of the kernel 3(t) as 
I+ k-m. Since %(r) is symmetric, assume t > 0. 

In the first term of the integral (18) the integration path can be closed, adding a 
semicircular contour at infinity in the upper half-plane '7 > 0. Only complex poles at fs 
contribute totheintegra1,andasa result thefirst termvanishesexponentiallyast+ +m. 

In the second term of the integral (18) a semicircle in the lower half-plane g < 0 can be 

t To avoid explicit consideration of singulanties of the kernel g7 one firs1 performs the Fourier transform 
I+ 5andthenthelimity,y'-O. 
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added to the integration path. Hence, the real poles at f r  also contribute. Making use 
ofRes[D:(-c)/D.(-5)] = -1 weobtain 

q t )  = -i 2 e-'ht ( I +  +a). (19) 
I' 

To make the diffraction problem definite, we introduce, as always, a small dissip- 
ation, replacing gr by El - ia, with a+ +O. It means that in the kernel of (18) D,(-() 
is to be replaced by D J - 5  - io), and that f(t) is to be multiplied by e-''c. After the 
dissipation U is introduced, the integration path in kernel (18) can be chosen along the 
real axis e. Changing the integration variable in the second term, 5- -5 ,  we get 

where 

(21) 

Here the Wronskian (AM) was used, and we put U = 0 in the functions D, entering in 
the numerator. 

3. Solution of the integral equation 

Integral equation (17) can be solved by the Wiener-Hopf technique [ 181. To do this, we 
define a new unknown function for f < 0, 

~ ( t )  = dt' u(t')%(t - t') c 
and extend the functions u,fand U to the entire taxis, assuming that by definition U = 0 
and f = 0 for t < 0, and U = 0 for I > 0. With these definitions one can see that the 
following equation is valid for all I values: 

+E 

dt' u( t ' )2 ( t  - t ')  = .(I) + f(t). (23) I" 
Perform the Fourier transformation 

The Fourier transform of the kernel %'(I) is H(5). The singularities of H ( 5 )  are poles, 
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the locations of which are shown in figure 2. The poles of the first term in (21) are the 
'real' poles at E, - io and the complex poles at cs. The residues of these poles are -1. 
The poles of the second term are at -5, + io and -cs with residues +l. The complex 
poles of H([) are located symmetrically with respect to the real and imaginary axes: 
*Es, kc,*. Function H ( [ )  is regular in the strip lql s U',  where U' = U -  0 (see figure 

The analytical properties of the transform Li((5') are determined by the properties of 
the field q ( x ) .  It followsfrom physical arguments that q ( x )  is exponentially small when 
1x1 * uH. Hence, 6(5) is obviously regular at 1) < U',  i.e. in the strip and below it. The 
same is true for the transform 

3). 

RE) = i(l; + El  - iu)-'. (25) 
Since for large t kernel 3(r) - e-4d and since v( t )  is exponentially small for I a I ,  one 
can see that u(t)  - e''as 1- -m. Hence, U(( f )  is regular at 1) > -U, i.e. in the strip and 
above it. 

As a result, the Fourier transforms of all the functions which enter (23) are regular 
in the strip 171 s U' < U. Hence, the following equation is valid in the strip: 

a - )H( t )  = 40 + fcn 1111 s U'. (26) 

H(C) = f f + ( W - ( C )  (27) 

The next step in the Wiener-Hopf technique is the factorization of the kernel. 

where H + ( i )  is a function with all its singularities below the strip, while H_(<) is a 
function with all its singularities above the strip. The calculation of these functions is 
given in the next section. The result is 

where 

Pt(t) is a polynomial, the order of which is equal to the number of propagating edge 
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states, and Q + ( n  is an infinite product over all the complex poles of H( 5)  located in the 
lower half-plane. It follows from the asymptotic behaviour of C,, given by (A21), that 
Q+(c)  converges when combining the factors, which correspond to the poles 5, and -e:, located symmetrically with respect to the imaginary axis. 

The real quantity centering in (28) is given by the principal value of the integral 

Factorization (27) is assumed to be symmetric, i.e. 

H - ( C )  = H+(-C). (31) 
It follows from the symmetry of the location of the poles of H ( c )  that 

where 

From (28) and (32) one can obtain H ( c )  as an infinite product 

H(f )  = H(0) exP(K2)[P+ (e)p-(5)e+(5)Q-t5)1-'. (34) 
Function H+(c)  has no zeros in the strip 1111 < U', and hence (26) can be written in the 
form 

Now we have to perform the decomposition of the excitation term of the integral 
equation, 

M Z ) = h t ( C )  + h - ( 5 )  
where h+ is regular in the strip and above it, and h- is regular in the strip and below it. 
It is easy to verify that 

Function k ( 5 )  differs from fie) by a constant factor, while the pole of f(5) in the 
expression for h+(c) is quenched by the zero of the factor in brackets. 

Substituting decomposition (36) in (35) gives 

f i ( c ) f f - (O-h - (o=-  u'(e) + h,(C) -p (C) .  (37) H +  ( 5 )  
If one performs the analytical continuation of both sides of (37) from the strip lql s U' 
to the entire complex plane, the LHS becomes a function regular for 11 S U', while the 
RHS becomes a function regular for 17 3 -d. Hence, p ( c )  is an entire function. 
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-5, * ra I 

5,- io ! 
Figure3.Strtp'q C 0.u hereJllihr FounerirJnr- 
formrarr reguhr. 3ndthc integration paihsC,. 

Figure.(. See text. 

Actually,p(C) 0, sincep(C) -b 0 as 5- m. To prove this, consider the LHS of (37) 
as f+ m in the lower half-plane. It is obvious from (36) and (25) that h-(z )+ 0 as 
C+ m. The behaviour of 5(C) as c-b m is determined by the behaviour of u(t)  as I +  0. 
In [17] it was demonstrated that at small distances the wavefunction II) in a magnetic 
field obeys the Laplace equation. Hence, the singularity of ly as x + 0 is the same as the 
singularity of the electrostatic potential near the edge of a metallic plane with a zero 
potential. As a result, u(r)  - r* / *  as t+ 0, and correspondingly 5( f )  - C-3/2 as C-P m. 
Making use of (57), we can see now that H + ( C ) f i ( c )  -b 0 as 5- 

Making use ofp(5) 0, one finds eventually the Fourier transform of the solution 
of integral equation (17): 

QED. 

a3 = h-(O/H-(C) .  (38) 

4. Factorization of the kernel 

To factorize the kernel H(C), we consider first its logarithmic derivative 

and decompose it [18] 

where A, is regular for q > -U, and A.. is regular for q < U. In these domains the 
functions A= are given by integrals 

NO = A+ ( 5 )  + A-(C) (40) 

The integration path C, is from E = --m to 5 = fm along the lower boundary of the strip 
lql S U', while C_ is in the same direction along the upper boundary (figure 3). One can 
easily verify that 

A-(C) = -A+(-Cb (42) 
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The factorization of the kernel H ( c )  is given in terms of the function A=(C) as follows: 

where t ,  are arbitrary integration constants. To ensure symmetry relation (31), we have 
tochoose = -e+. 

The asymptotic properties of Act) as 5 = p eiq + CO can be found from the known 
asymptotic properties of the functions D.(C) [19]. The result is as follows: in the lower 
and upper sectors (hatched in figure 4) 

A ( ~ ) = ~ - 2 v / ~ +  . . .  (44) 
while in the right and left ones 

A(C) = I/[ + 2(2v + i)/t3 (45) 
Because of the growth of A(t) in the lower and upper sectors, one cannot close the 
integration path in (41). This is the reason for calculating first the function 

Represent the integral along C, as an integral along the closed contour C, + CR 
minus the integral along C,. Here C, is a semicircle in the lower half-plane, with radius 
R - t  m (see figure 4). For 7 > -U' the integral along C, + C, is a sum of contributions 
from the poles cs of A(C) in the lower half-plane. These poles are in the same points as 
thepolesofH(c), andResA(5,) = -1. Asaresult 

The sum over r runs over a finite number of 'real' poles 5, - io and over an infinite 
number of complex poles 5; and -<:. The infinite sum converges if one combines the 
termscorresponding to 5; and -e:. 

Calculating the integral along CR, we can neglect 5 compared to r' and replace A( f ' )  
by the asymptoticexpansions (44) and (45). Performing the limit R- p, one finds the 
integral to be equal to -1/4. Combining both integrals we have 

Introducing (49) into (43) we have 
(-) I 

H+(c)=H+(0)exp[Qc2 +A+(O)c]n( l  -$)- e-ii5,. 

Setting f = 0 in (27) we find 

H+(O) = H-(O) = [H(O)]@. 
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To calculate At(0) from (41) we can choose the integration path along the real axis 
since A(0) = 0. After performing the limit U+ 0, the integration path C, encompasses 
the poles g, from above and the poles -5, from below (see figure 3). As a result, the 
integral is represented as a sum of two terms, the first being the sum of half-residues and 
the second being the principal part of the integral, i.e. 

where c is given by (30). The first term in (52) when introduced into (50) cancels the 
exponential factors, corresponding to the real poles of the infinite product, and we 
obtain (28). 

The asymptotic behaviour of infinite products like Q+(C) in (29) for 5- mdepends 
on the asymptotic behaviour of zeros cs for s -+ m [ 181. Since there is no simple function 
with an asymptotic behaviour of zeros like in (A21), we come back to the integral 
representation on (41) of function A,. For q > U we can represent A,(T) as an integral 
along the real axis and split the integral into a sum of two parts, 

with 

(54) 
M ( E ) = A ( E ) - r = - M ( - E ) .  E 

5 + l  
It follows from (45) that for E + &m 

In the first integral we expand (E' - 5)-' in powers of t ' / C  and find that this integral is 
of the order of t-2 as 5 + 10. The second integral is equal to 1( 5 + i). As a result 

M ( f )  = (4v + 3)$-3. (55) 

A+(;) = 95 + . . . (5-  =, q > 0). (56) 
Substituting (56) into (43) one finds 

Ht (5 )  - C'P (5-  -, q ' 0). (57) 

5. Scattering matrix 

First we calculate the scattered field y' in the far right side of the lower half-plane 
( x  = + m , y  < 0). It follows from (7) that fory < 0 

Introduce the non-dimensional variables t and v from section 2 and substitute Y k  and 
Q; from (A17) and (15), respectively. Then we obtain 

As .r+ +m, only the 'real' poles El - io contribute to the integral (see appendix). 
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Making use of (All) ,  one obtains 

y < 0 ,x - r  +so: ~ ‘ ( x ,  y )  = -i 2 L S ( ~ ~ .  - iu)@,y(x,y). (60) 
r 

Comparing (60) with (l), using c7((6) from (38) with k ( t )  andf(5) from (36) and (25), 
we find the scattering matrix 

Here we put U = 0, since the points f = -et are far from the poles of Ht(t). The 
scattering matrix is symmetric in 1 and 1’. This symmetry results from the time-magnetic 
field inversion combined with reflection from the x z  plane. 

The matrix elements Sr/, are given in terms of a rather complicated function H + ( t ) ,  
but the squares lS,p12 can be found in a very simple closed form. Consider first 

IHt(E)I2 = W O )  e*’’41p+(t91-2 lQ+(E)l-z (62) 

for real argument 5. From the symmetry of the complex poles it follows that 

Qt(E)* = Q-(O (63) 

Making use of this relation and (33) and (34). we can eliminate the infinite product from 
(62). As aresult, 

IH, (f)lZ = H E )  P-(E) /P+ (5)“. (64) 

When setting e = -& in (64), we can set U = 0 in P, (e )  and omit the complex-wn- 
jugation sign. Function H(E) has a pole at 5 = -Er with residual equal to +1,  while 
function P _ ( g )  has a zero. Performing the limit t-r -&we obtain 

lW+(-E/)l* = - C ( E , ) / P + ( - E / )  (65) 

Now from (61) and (65) one obtains a very simple closed expression 

The possibility to obtain closed expressions for the squares of the scattering matrix 
elements is perhaps a general property of some diffraction problems. A similar result is 
obtained in the case of electromagnetic wave diffraction at the open end of a semi- 
infinite waveguide [ZO]. 

In what follows we give explicit expressions for ISPI’. If the energy E is between the 
bulk Landau levels I = 0 and I = 1, only one edge state with 1 = 0 exists, and obviously 
lSwl2 = 1. If E is between the Landau levels 1 = 1 and l = 2, two edge states exist with 
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f 

Flmue 5. Plot of E versus k for edee states. 

wavevectors Eo < 0 < El  (see figure 5). From (67) it follows immediately that 

When E is between the Landau levels I = 2 and 1 = 3, three edge states exist with 
Eo CO < E l  <Eland 

The other matrix elements can be obtained by changing the indices. It is a straight- 
forward calculation to verify flux conservation for (68) and (69). Note that (68) can be 
deduced from (69) by omitting a[l the factors involving e2. 

Ofspecial interest is thecase whenenergy Eapproachesiheenergyofa bulkLandau 
leveli5wH(n + &),i.e. U = n + 6,6+ O.WhenEisbelowthethreshold(6 < O),equation 
(AS) hasnroots, whicharezerosoftheHermitepolynomialH,(E/v2). Ifniseven, the 
wavevectors E, are divided into pairs (Eo, = -E1), . , .. If n is 
odd, except for the pairs there also exist a single mode 5, = Owith I = (n - 1)/2. When E 
isabove the threshold(6 > 0), an additional wavevectorg, S 1 appears. Thiswavevector 
corresponds to a quasi-bulk state located far from the boundary at yR = a&d2 9 aH. 
Forexample,when Y-+ lonehasEo-t O(singlemode)andE1-t fm(quasi-bulkmode). 
When Y + 2 one has So+ -SI (pair of modes) and E2-+ +* (quasi-bulk mode). From 
(68) and (69) it follows that near the threshold (6- 0) the single mode and the quasi- 
bulk modes are weakly mixed with other modes, while the pair modes are transformed 
nearly into each other. 

= -Ea), (El,  
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Appendix. Edge states and Green function 

Here we collect for reference purposes some formulae related to the Schr6dinger 
equation for a ZD electron confined to a half-plane in a magnetic field [21,22]. 

We choose the Landau gauge of the vector potential 

A ,  = -Hy  A ,  = 0. (AI) 

In this case the edge states in the upper half-plane y > 0 are eigenfunctions of the 
Hamiltonian ( 2 )  satisfying the following boundary conditions: = 0 at y = 0 and 
y = +m. The edge states are of the form 

W ( X . Y )  = N e i k x W  ('42) 

where k is the wavevector, and function x obeys 

x k x  = EX ~ ( 0 )  = x(+m) = 0 

The equation for x can be transformed to a non-dimensional one, if the following 
variables are introduced: 

s = d y / a H  E =  f i k a H  v + 1 = E/ILwH w H  = felr-r/mc. 

The non-dimensional equation reads 

Two linearly independent solutions are the parabolic cylinder functions [I91 

Dp(S - E )  D , ( -S  + 8. ('4.5) 

Since v > 0, we have 

D ,  (S) -, 0 D"(-s)+ m ( S -  ++ (A6) 

Hence, from the boundary condition at y = +?a, it follows that 

X ( Y )  = - 5). (A7) 

From the boundary condition at y = 0 one has 

D,(-E) = 0. (A81 

This equation has a finite number of real roots El ( I =  0,1,. . ., [ V I ,  where [v] is the 
integer part of U), where I is the number of nodes of functionx(y), excluding y = 0. The 
label 1 is also the number of the bulk Landau level, from which the edge state is derived. 
The roots &(v) determine the wavevectors k@) of the edge states present for given 
energy E (see figure 5). 
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From equation (A31 one can prove that for any eigenstate 

aE/ak = - ( ~ 2 , / 2 m ) x ' ( O ) ~  

if the normalization is . ,  conventional 

Jo-- dr AY)* = 1. 

Making use of this relation, it is easy to find the edge states normalized to unit flux 

Note that the normal derivative at the boundary y = Oof all these states is the same. 

from states (A10) by changing the signs of x and y, i.e. 
The edge states at y < 0 for the same gauge of the vector potential can be obtained 

The additional minus sign in front of Y is introduced to represent the change of the sign 
of the derivative. 

The Green function C(x,y;x',y') obeys (5) in xy and the following boundary 
conditions: 

(i) G = 0 aty = 0,y = + m , x  --XI-+ f-; and 
(ii) G is a superposition of edge states propagatingfrom right to left atn - x' -+ -m. 

Owing to the translational invariance in x the Green function has the form 

Function Ck is the Green function corresponding to %ek (A3), i.e. 

[%ek(Y) - ElCk(y,y') = -a(Y - Y'). (-413) 

Hence, 

where Qk and Y k  are solutions of equation (A3) with boundary conditions 

( P k ( 0 )  = 0 Y k ( + W )  = 0 (A15) 

Wy{@, Y} = QY' - YW = 2m 

and normalied by the condition 

(A161 

where W, is the Wronskian iny. 
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It follows now from (A4) and (A6) that 

Making use of 

wdD,(S), D,(-S)I = WIif2/r(-v) (A181 
we find from (A16) 

A B  = (maH/. . ' /2)r(-Y)/D,(-n.  ('419) 
To satisfy the boundaryconditions atx - x' -+ -tp, we choose the proper integration 

path in (A12). Consider Gk for complex k, i.e. change the real variable E to a complex 
one 5 5 + iq. Since DJC) is an entire function in [, the only singularities of Gk in 5 
are poles, which correspond to the zeros of the denominator in A B  (A19). The zeros 
of the parabolic cylinder functions 

DJ-5) = 0 (-420) 
define first-order poles. A finite number of these poles are on the real axis at points &. 
These real poles correspond to propagating edge states, see (A8). Besides, there exists 
an infinite number of complex poles CS at complex-conjugate points. The complex poles 
correspond to evanescent edge states. 

Using the asymptotic expressions for D,(-5) as c+ m, one can find that for large 
151 the roots of (A20) are near the Stokes lines 

( A m  5, e"n/f4sl12, 

Bearing in mind the analytical properties of Gk in the 5 plane one can verify that the 
boundary conditions for G at x - x'-+ -tm are satisfied if the integration path in (A12) 
encompasses all the real poles from above. 

References 

[l] PrangeREandNeeT-W 1968Phys. Reo. B168779 
[Z] Khaikin M S 1969Adu. Phys. 18 1 
131 Halperin B I1982 Phys. Re". B 25 2185 
[4] Streda P, Kucera J and MacDonald H A  1987 Phys. Reu. Lett. 59 1973 
[5]  Biittiker M 1988 Phys. Reu. B 38 9375 
[6] Komiyama S, Hirai H ,  Sasa S and Hiyamiry S 1989 Phys. Re". B 40 12566 
[71 Van Wees B J, Willems E M M, Harmans C J P M. Beenakker C W J ,  Van Houten H. Williamson J G, 

[SI Hang R 1, MacDonald A H, Streda P and Van Klitring K 1988 Phys. Re". Len. 61 2797 
[91 Van Wees B 1, Willems E M  M, Kouwenhoven L P, Harmans C J P M, Williamson 1 G, Foxon CT and 

[IO] Roukes M L, Scherer A. Allen S I, Craighead Jr H G, Ruthen R M, Beebe E D and Harbison J P 1987 

[ l l ]  Washburn S, Fowler A B. Schmid Hand Kern D 1988 Phys. Reu. Len. 61 2801 
[12] Chang A M, ChangT Y and Baranger H U 1989 Phys. Reo. B 63 996 
[I31 Van HoutenHandBeenakkerCWJ 1990Analogiesin OpcicsandMicroelectronicsed WVanHaeringen 

[I41 Martin T and Feng S 1990 Phys. Reo. Len. 64 1971 
[15] Ohtsuki T and Ono Y 1989 1. Phys. Soc. Japan 58 3863 

Foxon CTand Harris J J 1989 Phys. Rev. Leu, 62 1181 

Harris J J 1989 Phys. Reo. B 39 8066 

Phys. Reo. Lett. 263011 

and D Lenstra (Deventer: Kluwer) p 203 



7306 Y B Levinson and E V Sukhorukoo 

1161 Glazman L I and Jonson M 19891. Phys.: Condenr. Marrer 15547 
117) Levinson Y B and Sukhorukov EV 1990 Phys. Lea. A 149 167 
1181 Noble B 1958 Methods Based on the Wiener-Hopf Technique (London: Pergamon) 
[19] Erdelyi A (ed) 1953 Higher Tranrcendental Functions (New York: McGraw-Hill) "01 2 
[20] Vainshtein L A 1953 Difraziya Elecrromognitnykh i ruukouykh Vofn M Orkryrom Konre Volnoooda 

[21] MacDonald A H and Streda P 1984 Phys. Reo. B 29 1616 
[22] MacarovNNandFuksIM1971Soo. Phys.JETP33436 

(Moskva: Sov. Radio) 


